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Abstract—This work is concerned with applying iterative
image reconstruction, based on constrained total-variation min-
imization, to low-intensity X-ray CT systems that have a high
sampling rate. Such systems pose a challenge for iterative image
reconstruction, because a very fine image grid is needed to
realize the resolution inherent in such scanners. These image
arrays lead to under-determined imaging models whose inversion
is unstable and can result in undesirable artifacts and noise
patterns. There are many possibilities to stabilize the imaging
model, and this work proposes a method which may have an
advantage in terms of algorithm efficiency. The proposed method
introduces additional constraints in the optimization problem;
these constraints set to zero high spatial frequency components
which are beyond the sensing capability of the detector. The
method is demonstrated with an actual CT data set and compared
with another method based on projection up-sampling.

I. I NTRODUCTION

T HIS proceedings focuses on a fundamental issue of
resolution in iterative image reconstruction (IIR). IIR

is being considered for application in computed tomography
(CT), see for example [1], because it is possible to account
for noise in the data model and accordingly allow for high
quality images with a reduced exposure [2]. IIR methods
being considered for CT, all involve implicit solution, see
section 15.3 of [3], for the image as opposed to explicit
solution, derived from exact or approximate inverses to the
continuous cone-beam transform. For explicit reconstruction
algorithms, which are generally some variant of filtered back-
projection (FBP), the reconstructed volume can be obtained
one point at a time. Images can be shown on grids of any size
and with arbitrarily small grid spacing, for example blowing
up a region-of-interest (ROI). Note, that does not mean the
resolution is arbitrarily high, because the system resolution
is still limited by the discrete data sampling. Reconstruction
by implicit solution allows more flexible and realistic data
models for the tomographic system, but at a price. As pointed
out often, IIR algorithms are generally more computationally
intensive. Another important issue is that a complete expansion
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set for the imaged volume is necessary in order to obtain the
reconstruction, and the complete image must be solved for all
at once; the image cannot be gotten voxel-by-voxel.

More concretely, let us consider a linear imaging model
using a voxel expansion of the volume and ideal conditions of
perfect data consistency:

g = X f , (1)

where g represents the projection data as a 1D vector;f

is a vector of voxel values;X is the system matrix, which
yields line integrals through the volume and for the present
work is based on the ray intersection length as specified in
Siddon’s method. This model, which forms the basis of many
IIR algorithms, is difficult to solve explicitly for realistic size
models of a CT system. The matrixX is ill-conditioned and
can be extremely large, up to a size of109×109. Equation (1)
is usually solved implicitly by one of many algorithms, con-
jugate gradients, algebraic reconstruction techniques (ART),
etc. Two practical issues arise in the implicit solution of Eq.
(1): (I) the voxel representation of the image must include the
whole region where the measured transmission rays intersect
with the support of the subject [4], and (II) to attain the
intrinsic resolution of the data the voxels must be small
compared with the detector bin width. The combination of
these two factors causes a computational burden, because
straight-forward voxelization of the reconstruction volume will
lead to a very large array. But also, mathematically, the second
point that voxels should be small compared to the detector
bins leads to an under-determined linear system for Eq. (1),
because there will be more unknown voxel values than known
ray-transmission measurements. In this work, we examine a
couple of possible solutions for addressing the second issue
– dealing with the large null-space of Eq. (1) in a controlled
way.

In Sec. II we present the image reconstruction algorithms
and in Sec. III we demonstrate them on an actual low-intensity
CT scan.

II. CONSTRAINED, TOTAL-VARIATION MINIMIZATION

THEORY AND ALGORITHMS

In recent years, we have been investigating the solution of
Eq. (1), by solving the constrained TV-minimization problem:

f∗ = argmin‖f‖TV such that|X f − g|2 ≤ ǫ2 f ≥ 0, (2)

where‖f‖TV is the sum over the gradient magnitude image;
andǫ is a data-error tolerance parameter necessary because the



projection data is likely not consistent with the image model.
To solve this optimization problem, we have been developing
a heuristic algorithm [5], [6], [7], [8], [9], [10] that alternates
between projection-onto-convex-sets (POCS), to enforce the
constraints, and steepest descent (SD) to reduce image TV. The
key point of this algorithm is that the SD step-size is controlled
adaptively, so as to not undo progress toward the feasible
image set with POCS. This alternating algorithm is called
adaptive SD-POCS (ASD-POCS). For investigations where
solving Eq. (2) accurately is important, optimality conditions
should be checked [6], [10]. On the other hand, for practical
applications it may not be necessary to have an accurate solver
[7], and in such cases ASD-POCS yields a clinically useful
image within 10-20 iterations.

Image reconstruction algorithms for CT based on Eq. (2)
have been shown to be effective for sparse-view projection
data [5], [11], [12], [6], [7], [13], [9], [14], [15], [16], which
has obvious implications for patient dose. More recently, we
have been interested in how to apply ASD-POCS to what
has traditionally accepted as fully angularly-sampled data. For
such data, structures on the scale of a detector bin-width are
expected to be resolved. For IIR, this requirement poses the
above-mentioned problem that the number of voxels may be
much larger than the number of data, and direct application
of the IIR algorithm may lead to strange noise patterns which
can interfere with imaging tasks [10]. There are likely many
ways to resolve this problem; for example, introducing a non-
zero cross-section to the ray model inX may yield nicer noise
patterns while maintaining image resolution. At the same time,
more realistic system model ling usually comes at the expense
of computational speed. As a result, we have been seeking
other alternatives.

In Ref. [10], we propose to stabilize the problem in Eq. (2)
by making the following observation: CT resolution is non-
uniform, and generally, the angular-sampling is worse than
detector resolution. Assuming that the individual projection
sampling satisfies Nyquist frequency, each projection can be
up-sampled to increase the number of measurement rays at
each projection. We will still have a data set which is under-
sampled in the angular direction with respect to the very
high resolution imaging grid. But we already know that TV-
minimization approaches appear to be effective with this type
of under-sampling. We refer to this approach as up-sampling
ASD-POCS or, in this text, as simply up-sampling.

In this proceedings, we propose another approach which
may have even a greater advantage in terms of algorithm
efficiency. The method comes from realizing that while we
need many voxels per bin-width for flexibility of the image
representation, we cannot hope to actually attain true super-
resolution where structures smaller than the detector bin
are visible. To capture this idea mathematically, we impose
constraints on the Fourier transform of the image. Specifically,
high frequency components of the image are set to zero:

Ff(|ν| > νmax) = 0, (3)

whereF is the discrete Fourier transform (DFT);ν represents
spatial frequency; and the frequency magnitudeνmax is deter-
mined by the bin spacing. If the detector bins have widthw, we

Fig. 1. FBP slice image of a rabbit scanned by a low-dose XCounter CT
system. The raw FBP image was smoothed by a Gaussian filter, reducing the
image TV by a factor of 8. The indicated rectangles show the ROIs which
are used for the algorithm comparisons. In particular, the small one surrounds
the wire object used to obtain a sense of resolution. The display window is
[0,0.04] mm−1.

setνmax = 1/(2πw). Although this choice makes sense physi-
cally, νmax can be taken as a algorithm parameter, but varying
νmax is beyond the scope of this study. Adding this constraint
to the optimization problem in Eq. (2) leads to frequency-
constrained ASD-POCS. This approach involves processing
fewer data in exchange for computing DFTs, which can be
done efficiently with the fast Fourier transform. The pseudo-
code for frequency-constrained ASD-POCS is the same as that
reported in Ref. ([10]) with the additional steps of enforcing
Eq. (3) at each line where the image positivity is enforced.
For the present results, the frequency constraint was imposed
before positivity.

III. R ESULTS

The up-sampling and frequency constrained ASD-POCS
algorithms are demonstrated with an XCounter CT scan of
a rabbit with a thin wire taped to the outside of the sample
holder. The data are low-intensity and contain 1878 projections
with a 2266x64 bin detector at a resolution of 0.1 mm.
The thin wire provides a good resolution test for the image
reconstruction algorithm. For the present purpose, we takethe
middle row on the detector from this data set and focus on
2D fan-beam CT reconstruction with 1878 projections on a
2266-bin linear detector array.

An FBP image of this data set is shown in Fig. 1, where
some regularization is performed by Gaussian smoothing with
a window 2 pixels wide. The rectangles indicate the regions
where comparisons of the different algorithms are shown.
Comparisons for each algorithm will be made at a level of
image regularization where each image’s TV-norm is an eighth



Gaussian-filtered FBP

ASD-POCS (0.1 mm pixels)

ASD-POCS (0.025 mm pixels)

Fig. 2. (Top) FBP ROI’s for the image presented in Fig. 1. (Middle) ASD-
POCS image reconstructed from original data for a grid with 0.1 mm pixels.
(Bottom) ASD-POCS image reconstructed from original data for a grid with
0.025 mm pixels. The image TV for each case is set to an eighth of that of
the raw FBP image. The display window is [0,0.04] mm−1 on the left ROI
and [0,0.09] mm−1 on the right ROI.

of that of the unregularized FBP image. The images are shown
just to give a sense about the behavior of the algorithms; more
rigorous evaluation with different levels of regularization will
be performed in future work.

We illustrate the problems with employing a matched-
resolution grid, 1024×1024, and a very high resolution grid,
4096×4096, with the basic ASD-POCS algorithm. The pixel
width is 0.1 mm for the former grid and 0.025 mm for the
latter. Note that the rabbit support projects onto the middle
1000 bins of the full projection. The FBP image is shown on
a 4096×4096 grid, but because FBP is based on an explicit
inverse its pixel values are not affected by the grid size. In
Fig. 2 the matched grid clearly leads to a loss of resolution

ASD-POCS (projection up-sampling)

ASD-POCS (spatial frequency constraints)

Fig. 3. (Top) ASD-POCS image obtained from the up-sampled data
set. (Bottom) ASD-POCS image reconstructed from original data set with
additional constraints on the spatial frequency. For both images the pixel
width is 0.025 mm. The image TV for each case is set to an eighthof that
of the raw FBP image. The display window is the same as that of Fig. 2

relative to FBP, because the image is forced to be uniform over
the 0.1mm× 0.1mm squares. Simply going to a larger array
does improve the ASD-POCS image, but the noise pattern
shows additional false structure when compared with the FBP
image. These structures arise from the fact that the imaging
problem is under-sampled by roughly a factor of ten and
this under-sampling occurs in both view-angle and detector-
bin directions. The random, sparse specks that appear could
be confused with micro-calcifications in the context of breast
imaging.

Finally, we show images for ASD-POCS using up-sampling
and frequency constraints, and the resulting region-of-interest
images are shown in Fig. 3. For the up-sampling method the
data are up-sampled at each projection so that the data set size
nominally becomes 1878 views by 9064 virtual bins prior to
reconstruction by ASD-POCS. The frequency constraint ASD-
POCS takes the original 1878×2266 data set as input. As can
be seen in the figure, both approaches remove the disturbing
noise pattern seen at the bottom of Fig. 2. Each of these
images show some potential advantage over FBP in that the
wire appears to be better focused in the up-sampling approach,
and the image noise level is reduced approximately 20% for
both up-sampling and frequency constrained ASD-POCS. It
is possible that the frequency constraint method could lead
to better resolution by allowingνmax to be increased. Such a
study will be investigated in future work.



IV. CONCLUSION

We have developed modifications to ASD-POCS that allow
for high-resolution recovery of structures occurring on the
scale of the detector bin width. In particular, in this work we
show that including constraints on the spatial frequenciesof
the reconstructed image can improve ASD-POCS images by
eliminating false structures, which arise from the large null-
space inherent in the imaging model when very high-resolution
grids are used to represent the image. Further research, will
compare the up-sampling and frequency constraint approaches
with many data sets and different levels of image regularity,
and we will also look into implementing more realistic ray-
models that account for source spot-size and the extent of
the detector bins. This realistic modeling in conjunction with
frequency extrapolation [17] may allow even further improve-
ment of CT image quality.
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